资讯中心NEWS CENTER

在发展中求生存,不断完善,以良好信誉和科学的管理促进企业迅速发展
资讯中心 产品中心

首页-资讯中心-湖北移动语音关键事件检测供应

湖北移动语音关键事件检测供应

更新时间:2025-11-04      点击次数:2

    存储器通过通信总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现上述方面提供的一种事件检测方法中的任一方法步骤。第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述方面提供的一种事件检测方法中的任一方法步骤。以上可见,应用本发明实施例提供的方案,实时获取目标防护舱的图像,并判断当前时刻所采集到的当前帧图像是否包括目标对象,由于目标对象为:能够表征用户进入目标防护舱的用户身体部位,则可以基于当前帧图像判断当前时刻是否有用户进入目标防护舱。则当判断结果为是时,便可以基于当前帧图像,确定待分析图像,进而将该待分析图像输入到预设的检测模型中,得到当前时刻,关于目标语音关键事件检测防护舱的事件检测结果。这样,由于检测模型是基于各个样本图像和各个样本图像的事件检测结果所训练得到的模型,因此,检测模型充分学习了样本图像和事件检测结果之间的对应关系。基于此,在本发明实施例中,利用采集到的真实图像来确定待分析图像,利用训练好的检测模型对待分析图像进行检测。语音关键事件检测算法通常基于机器学习和深度学习技术,通过训练模型来识别不同的声音模式。湖北移动语音关键事件检测供应

    便可以提高关于目标防护舱的事件检测结果的准确率。而上述事件检测结果中可以包括目标语音关键事件检测防护舱内所发生的事件类型,从而可以提高对防护舱内用户出现异常事件的检测准确率。附图说明为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。为一种防护舱的实物图;(a)为一种用于实时采集关于防护舱的图像的图像采集设备的安装位置的竖直剖面;(b)为一种用于实时采集关于防护舱的图像的图像采集设备的安装位置的水平剖面示意;为本发明实施例提供的一种事件检测方法的流程;为本发明实施例提供的另一种事件检测方法的流程;为本发明实施例提供的另一种事件检测方法的流程;为本发明实施例提供的一种事件检测装置的结构示意图;为本发明实施例提供的一种电子设备的结构。具体实施方式下面将结合本发明实施例中,对本发明实施例中的技术方案进行清楚、完整地描述。四川新一代语音关键事件检测介绍语音关键事件检测的好处有哪些?欢迎咨询!

    在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本申请实施例的精神和范围内。在本申请的示例性实施例中,在介绍本申请实施例方案之前,可以首先对本申请实施例涉及的术语进行介绍:1、事件类型及定义:事件类型是指不同的事件所属的类别,比如在金融领域有“实控人股东变更”、“信批违规”、“财务造假”等事件类型。事件类型的定义一般由该领域的**或经验人士来确定。2、触发词:触发词是指能够清楚的表明事件类型的一些词汇,比如“杀”、“袭击”、“见面”等。3、事件主体以及定义:事件主体是指事件发生的主要参与方,也是与该事件联系为紧密的一方,定义为实体。如:“xx科技实际控制人变更yy集团”、“zz集团已经资不抵债将进行破产重整”,这些事件中,“xx科技”即为该事件的主体,类型为“机构”,事件主体可以定义为多种实体类型。

    实施例一:待分析图像为上述类图像,即待分析图像为至少包含当前帧图像的目标防护舱的图像:则上述步骤s304,包括如下步骤f1-f2:步骤f1:将待分析图像输入到预设的场景图像检测模型中,得到场景图像检测模型输出的检测结果;步骤f2:基于场景图像检测模型输出的检测结果,确定关于目标防护舱的事件检测结果;其中,由于待分析图像为目标防护舱的场景图像,则在本实施例一中,所采用的检测模型即为预设的场景图像检测模型,且用于训练该场景图像检测模型的各个样本图像组中所包括的图像可以称为场景图像。需要说明的是,场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中的图像与待分析图像的图像数量相同,各个样本图像组中的图像为:所采集到的关于防护舱的图像。具体的,当待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,则场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像。其中,针对至少一个防护舱,在该防护舱中发生各类事件时,采集m+1帧关于该防护舱的图像,这样。语音关键事件检测有什么注意事项?欢迎来电咨询!

    得到正常事件以及每种类型的异常事件的概率和。这样,电子设备便可以将概率和值比较高的事件确定为目标防护舱内用户出现的事件的类型,并将该类型作为:关于目标防护舱的事件检测结果。其中,当正常事件的概率和比较高时,电子设备可以确定目标防护舱内未发生异常事件,当某类型异常事件的概率和比较高时,电子设备可以确定目标防护舱内发生该类型异常事件。例如,场景图像检测模型输出的检测结果为:正常事件概率5%,倒地事件概率50%,剧烈运动事件43%,破坏设备事件2%;场景图像检测模型的权重为:,则可以得到乘积为:正常事件概率4%,倒地事件概率40%,剧烈运动事件%,破坏设备事件%;光流图检测模型输出的检测结果为:正常事件7%,倒地事件概率40%,剧烈运动事件48%,破坏设备事件5%;光流图检测饿模型的权重为:,则可以得到第二乘积为:正常事件%,倒地事件概率8%,剧烈运动事件%,破坏设备事件1%;乘积和乘积的和值为:正常事件%,倒地事件概率48%,剧烈运动事件44%,破坏设备事件%;则电子设备可以确定关于目标防护舱的事件监测结果为:目标防护舱内用户出现倒地事件。需要说明的是,与上述实施例三类似的,上述步骤g2。在语音合成中,语音关键事件检测可以用于提取和合成特定情感或风格的语音片段。云南量子语音关键事件检测内容

语音关键事件检测在哪些地区被大力推广?欢迎咨询!湖北移动语音关键事件检测供应

    在本申请的示例性实施例中,所述对所述向量化语义表示w1进行span划分,得到多个语义片段可以包括:获取设定的span的大宽度max_span_width;根据span的宽度从1到max_span_width依次在所述向量化语义表示w1上进行选取,获得多个span的语义表示span_embedding。在本申请的示例性实施例中,可以根据设定的span的大宽度max_span_width=8对步骤s101得到的语义表示w1进行划分。划分方法可以包括:span的宽度从1至max_span_width依次在向量w1上进行选取,得到n个span的语义表示,即span_embedding。s103、对多个语义片段进行平均池化,得到每个span的表示w2。在本申请的示例性实施例中,因每个span的宽度不一样(span_embedding的维度可以为[sw,d1],其中sw取值为1~max_span_width),因此可以对这n个span的语义表示进行平均池化处理,从而得到这n个span的表示w2,w2的维度可以为[n,d1]。s104、使用自注意力机制对获得的每个span的表示w2进行计算,得到每个span的新的语义表示w3。在本申请的示例性实施例中,该自注意力机制可以为自注意力加权计算。在本申请的示例性实施例中,可以将步骤s103所得的span的表示w2通过自注意力机制(自注意力加权计算)计算得到新的表示w4。湖北移动语音关键事件检测供应

关注我们
微信账号

扫一扫
手机浏览

Copyright©2025    版权所有   All Rights Reserved   鼎萨化妆品(北京)有限公司  网站地图  移动端